Usability Test Plan

Andrea Lee
Team 6: Code Critters



Test Scenario 1: Coding Within Application

Test Goals
1. Test text input functionality of app interface
2. Test antipattern detection function
3. Feedback from critiquer should allow for errors in the code to be corrected

Required Software/Equipment

Zoom video conference software (tester and test giver)
desktop/laptop computer (tester and test giver)
Keyboard and mouse

Microphone

webcam

Internet access

Code critiquer app

Timer (only for test giver)

Description

The usability tester will be prompted to write their own program within the user
interface. As testers are sampled from computer science classes, they will be expected
to be capable of programming with java. Testers will be encouraged to make the
program at least 10 lines long, excluding any blank lines. Allowing testers to
independently generate code to be tested will allow for a wider variety of antipatterns to
be detected within the same scenario. However, testers may still ask the attending
consultant for possible code to test.

Once the program is complete the tester will be prompted to check the program
for antipatterns. If any antipatterns are detected the tester must attempt to correct these
errors and check the code again. This process will repeat until no errors are present.

Scenario Text

“This program uses two methods of input, file uploads and the text box in the
center of the screen. We will be testing the text entry first. Imagine that you are just
writing a program for yourself as practice. While the program can be simple, it should be
at least 10 lines long. If you need help thinking of a program | can give some
suggestions.Use the ‘check code’ function to find any errors in your code.”

Measurement List
e Time to complete tasks — Slow response times from testers may indicate
problems with app navigation.



Error detection — the code critiquer should automatically detect any errors within
the code

System understandability — users must understand the functions of each button
within the app interface

Error correction — users are capable of correcting their code when errors are
detected

Potential Observations

There is a chance that the code could be completed without errors on their first
attempt, this may require prompting the tester to knowingly add an error to their
code.

When an antipattern is detected within the code, the tester’s next actions will be
informed by their interpretation of the error message. A misinterpretation will lead
to a lack of error correction.

An error may also be undetected by the critiquer itself, this will require a bug
report.

Bug report form
See Bug report form

Post Test Questionnaire
See “post test questions” on test questionnaire form

Post Test Interview

1.
2.

3.
4.

Were there any elements in the interface you did not understand?

Did the format of the critique help you understand where and how an error
occurred?

Were any of the antipattern messages you encountered unclear?

Were there any messages that you understood but did not know how to correct?

Test Setup

The tester will begin a zoom call with the consultant and any attending

programmers. They will be given access to the Code Critiquer application as well as
permission to share their screen. The tester's microphone will need to be active to
maintain communication with the consultant and programmers.



Test Scenario 2: File Upload
Test Goals
1. Test file upload function of code critiquer
2. Test sign in function of code critiquer
3. Correct errors of an existing program through the code critiquer interface
4. Test the “view previous critiques” function of the code critiquer

Required Software/Equipment
e Zoom video conference software (tester and test giver)
desktop/laptop computer (tester and test giver)
Keyboard and mouse
Microphone
webcam
Internet access
Code critiquer app
Timer (only for test giver)
Sample program file

Description

The usability tester will be required to download a sample program file provided
by the usability consultant. Once the file has been acquired, the tester will need to
upload it into the application and check it for antipatterns. As this code was created by
the researchers, it will have the same errors each time. Like in the previous scenario,
the tester will need to correct and recheck the program until no errors are present.

Once no errors are present, the tester will be instructed to view the past critiques
saved. The tester must use this function to view the first critique of the provided
program file.

Scenario Text

“In addition to typing directly into the app, the code critiquer allows for files to be
uploaded for critique as well. By logging in, you will also gain access to previous
versions of your code. For this scenario, imagine that the file | gave to you is a
homework assignment that you want to check for errors before turning in. Log into the
Code Critiquer and correct any errors it finds. Once the code is free of errors, go
through the past critiques to find the original version of the file to compare it to the final
version.”

Measurement List
e Time to complete tasks — Slow response times from testers may indicate
problems with app navigation.



e Error detection — the code critiquer should automatically detect any errors within
the code

e System understandability — users must understand the functions of each button
within the app interface

e Error correction — users are capable of correcting their code when errors are
detected

Potential Observations

e Time spent searching for functions will need to be tracked by the consultant. As
this scenario is more structured than scenario one, response times can be
compared between participants.

e Misinterpretation of error messages will lead to their errors remaining
uncorrected.
Errors may also be uncorrected due to a lack of user knowledge.
Repeated searches through past critiques would indicate that the naming
scheme used by the program is unclear

Bug report form
See bug report form

Post Test Questionnaire
See “post test questions” on test questionnaire form

Post Test Interview
1. Were any functions difficult to locate?
2. Were the names of the previous versions of code easy to understand?
3. Did the error messages help you understand the flaws in the program?
4. What part of this scenario did you consider to be the most difficult?

Test Setup

Using the same zoom call from scenario one, the consultant will provide the
tester with a .java file containing a sample program to test. As this scenario requires
viewing past critiques, login info would need to be provided to the tester as well.



